

Apicultura (II) Apicultura e Espécies Cinegéticas

Jorge Oliveira & Catarina Coelho

Operações gerais de maneio

Janeiro

- Apesar de ser uma época morta, deve manter uma certa vigilância no colmeal (uma vez por, semana) e retirar as colónias mortas.
- Aproveite para melhorar os seus conhecimentos.
- É, também, boa época para reparar os quadros em mau estado.
- Registe as florações à volta do seu apiário.
- Feche as contas da sua exploração referentes ao ano anterior.
- Prepare a inspecção de fim de Inverno (quadros puxados, estrado limpo, etc).

Fevereiro e Março

Visita ao apiário:

- Abra a colmeia com a ajuda do fumigado e alavanca, em dia calmo e quente.
- Limpe a cabeça dos quadros com a ajuda da alavanca
- Verifique quadro por quadro e veja:
- O estado das ceras (se em mau estado e bloqueio substituir)
- Se a criação é regular, operculada, com ovos e larvas nas diversas idades e sãs (não é necessário ver a rainha).

Fevereiro e Março

- Centre os quadros de criação no ninho.
- Substitua o estrado por um limpo.
- Feche a colmeia e administre alimento líquido à razão de 1 kg de açucar x 1L de água e faça os restantes preventivos das doenças.
- Continue a operação velas restantes colmeias.
- Registe a floração.
- Nas regiões do Litoral coloque alças.

Abril

Normalmente é o mês mais delicado para a apicultura, pois o tempo variado, por vezes frio e chuvoso, não permite a saída das abelhas que já aumentaram a sua população, havendo assim, um maior consumo de reservas, podendo levá-las à morte pela fome caso as reservas sejam esgotadas.

Se isso suceder deve alimentá-las (1kg x 1l) semanalmente.

Abril

Deve ainda:

- Inspeccionar a força das colónias em dias calmos e quentes, verificando o estado da criação.
- Estar prevenido para eventuais enxameações, verificando se há alvéolos reais nos quadros do centro ou se há muitas abelhas.
- Pode ser época de desdobramento ou colocação de alças.

Abril

Se não o fez no mês anterior mude os quadros que:

- Estejam bloqueados;
- Estejam velhos e bolorentos;
- Tenham as ceras ressequidas (neste caso substitua por ceras puxadas).

Vigiar as colónias doentes:

- Se isto se verificar envie amostras para o Laboratório ou para a Divisão de Intervenção Veterinária respectiva (DIV);
- Faça os tratamentos indicados pela DIV

• _

Registar a floração

Maio

É dos meses mais importantes para a apicultura

- Observar o estado das colónias.
- Colocar alças.
- Substituir quadros do ninho, se necessário.
- Prevenir as enxameações.
- Fazer os desdobramentos.
- Renovar ou estabelecer novos apiários.
- Registar a floração.

Junho

- Colocar alças nas zonas mais altas.
- Vigiar as colmeias de modo a detectar doenças ou orfandades.
- Limpar as ervas dos colmeais, caso ainda não o tenham feito.
- Nas zonas com floração tardia ainda se podem fazer desdobramentos.
- Vigilância total em relação aos fogos.
- Vigiar o excesso de temperatura.
- Registar a floração.

Julho

- Continuação dos trabalhos do mês anterior.
- Vigiar as colmeias, no sentido de detectar orfandades ou doenças.
- Vigiar o excesso de temperatura sobre as colmeias.
- Começar neste mês a extracção do mel, nas zonas onde tenha terminado a floração.
- Registar a floração.
- Vigilância aos fogos. Período de grande risco.

Agosto

- Época de colheita do mel cresta e extracção.
- Época de renovar as raínhas das colmeias com fraca produtividade.
- Dar grande atenção às pilhagens, após a cresta.
- Fazer os tratamentos contra a varroa, após a cresta.
- Vigilância dos incêndios e excesso de temperatura.
- Registar a floração na zona do apiário

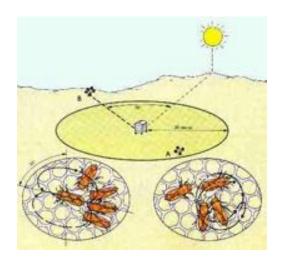
Setembro

- Continuação da colheita do mel, enquanto o tempo estiver bom.
- Reduzir a colmeia até ao ninho.
- Juntar as colmeias fracas às mais fortes se não houver doenças.
- Vigilância aos fogos e temperatura excessiva.
- Vigilância às doenças.
- Registar a floração.

Outubro

Inspecção de fim de Verão e preparação da colmeia para passar o Inverno sem problemas, verificando:

- A presença da rainha caso não tenha, junta-se a outra colmeia mais forte.
- Alimentação bastante se tiver pouca, ministrar alimento à razão de 2 kg de açucar x 1l de água.
- Se a colmeia está doente neste caso é melhor eliminá-la.
- Fechar a colmeia e colocá-la em posição de Inverno inclinada na direcção da entrada e com pesos na tampa exterior.


Novembro e Dezembro

- Nas regiões do litoral inicia-se a colheita de néctar e pólen nos eucaliptais e outras culturas.
- No interior é época de vigilância, principalmente que diz respeito à humidade e acidentes.
- Comece a reparar os quadros em mau estado.
- É tempo de elaborar os resultados.
- Também nesta altura deve procurar informações junto da Associação ou Direcção Regional de Agricultura.

Comunicação

Comunicação e a orientação das abelhas

 As abelhas são dotadas de um processo de orientação excepcional, baseado, principalmente, no sol como referência.

- Para regressar à colmeia, por exemplo, aprendem a situar o local, assim que fazem os primeiros voos de treino e de reconhecimento.
- Nestes primeiros voos, aprendem a situar a disposição da colmeia em relação ao sol, registando uma posição que jamais esquecem. Trata-se de uma espécie de memória geográfica.

Danças

- As abelhas utilizam o mesmo sistema de orientação, tendo o sol como referência, para guiar as suas companheiras em relação às fontes de alimento recém-descobertas.
- Neste caso, quando querem informar sobre a localização de fontes de alimentos, as abelhas transmitem a informação por meio de um sistema de dança:
 - quando a fonte de alimento está situada a menos de cem metros da colmeia, a abelha executa uma dança em círculo;
 - quando a fonte de alimento está localizada a mais de cem metros, a abelha executa uma dança em oito.

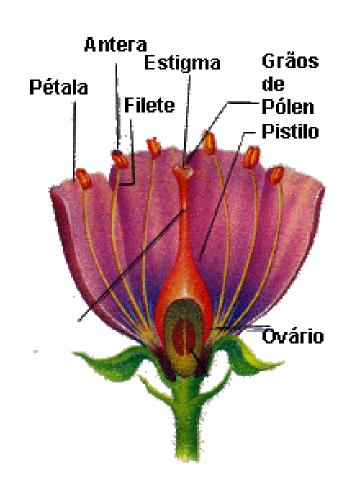
Dança das obreiras, a "dança em círculo"

Dança das obreiras, a "dança em oito"

Feromonas

- ✓ As obreiras guardiãs reconhecem as suas companheiras através do odor.
- ✓ A rainha, no voo nupcial, lança uma feromona para atrair o macho.
- ✓ Ao reconhecerem um perigo, alertam as companheiras libertando feromonas (glândula de Nasonov).
- ✓ São usadas para se orientarem no regresso à colmeia.
- ✓ A rainha liberta uma feromona que serve para informar aos membros da colmeia que existe uma rainha presente e em actividade, inibindo a produção de outras rainhas e inibindo a maturação dos ovários das obreiras de forma a impedir a postura de ovos.

Bater das asas


- Produzem zumbidos
 - Voo
 - De fundo da colónia
 - Chamamentos (muitas vezes por uma única abelha)

Polinização e flora melífera

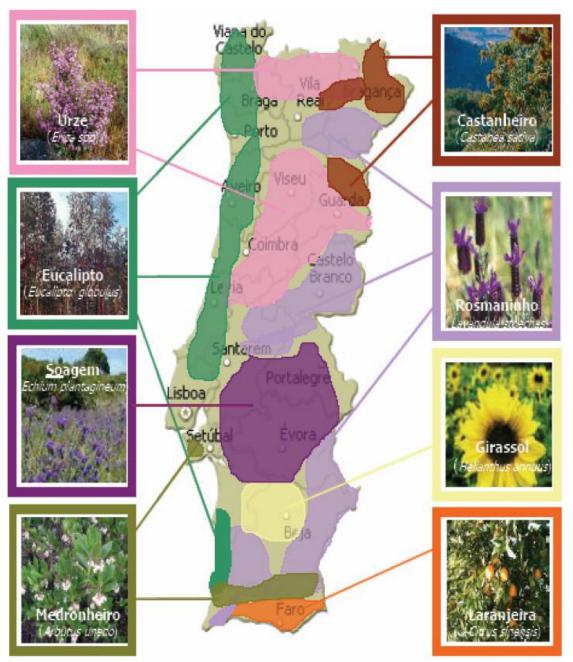
As abelhas e a Polinização

Polinização é a transferência dos grãos de pólen das anteras (parte masculina) para o estigma (parte feminina) das flores, possibilitando a fecundação da flor e posterior desenvolvimento do fruto.

Em alguns casos, o pólen é transportado pelo vento, mas há plantas que dependem dos animais, especialmente insectos, para que ocorra a polinização.

As abelhas e a Polinização

As plantas, por sua vez, para garantir a perpetuação da espécie, também desenvolveram mecanismos de atracção das abelhas, como:


- ■Cores: as abelhas diferenciam bem a cor amarela, verde, azul e violeta e são atraídas por elas.
- ■Aroma: as abelhas são muito sensíveis ao cheiro e visitam flores com odores específicos.
- ■Forma: a forma da flor ajuda a destacá-la na folhagem e também favorece a aproximação da abelha.
- ■Néctar: é o maior atractivo da abelha. Localiza-se nos nectários, que podem ser florais e extraflorais. Estes são encontrados no caule, folha, pecíolos etc., e no interior da flor, dentro da corola, na base do ovário, para atrair as abelhas e facilitar a polinização das flores. A secreção de néctar dentro da flor inicia-se na hora da abertura da flor e cessa logo após a fertilização.

As abelhas e a Polinização

- As abelhas colhem o néctar no fundo das flores.
 - Este néctar é colocado no estômago onde é desidratado e transformado em mel sob o efeito da saliva.
 - Ao procurarem o néctar as abelhas cobrem-se de pólen, um alimento essencial para os jovens.
 - Ao passarem de uma flor para outra, as abelhas asseguram assim a polinização das plantas.
- Os arboricultores pedem com frequência aos apicultores para colocarem as suas colmeias nos pomares.
- Sem flores não há néctar; sem néctar não há mel; sem mel não há abelhas.
- Estas relações simples fazem-nos ressaltar a importância do papel das flores na Apicultura.

Mapa 1 - Mapa das Espécies de Flora Melífera de Portugal Continental

Fonte: FNAP

Principais espécies de flora melífera

Rosmaninho (Lavandula sp.)

Urze (*Erica* sp.)

Medronheiro (Arbutus unedo)

Esteva (Cistus ladanifer)

Castanheiro (Castanea sativa)

Eucalipto (Eucalyptus globulus)

Girassol (*Helianthus annus*)

Laranjeira (Citrus sinensis)

Giesta (Cytisus sp.)

Soagem (Echium sp.)

Flora melífera

Quadro 18- Calendário de Floração de Espécies Melíferas

FLORAÇÃO	Jan	Fev	Mar	Aer	Mat	Jun	Jul	Ago	SET	Оџт	Nov	Dez
Urze (Erica umbellata)												
Castanheiro (Castanea sativa)												
Eucalipto (Eucaliptus globulus)												
Rosmaninho (Lavandula stoechas)												
Soagem (Echium plantagineum)												
Girassol (Helianthus annuus)												
Laranjeira (<i>Citrus sinensis</i>)												
Medronheiro (Arbutus unedo)												
Alecrim (Rosmarinus officinalis)												
Cardo (Carlina racemosa)												
MELADAS	Jan	Fev	Mar	Aer	Mat	Jun	Jul	Ago	SET	Оит	Nov	Dez
Carvalho (Quercus pyrenaica)												
Azinheira (<i>Quercus rotundifolia</i>)												

Fonte: FNAP

Flora melífera

- Assim, pode dizer-se que o mel varia de região para região em consonância com a origem floral que está intimamente associada a aspectos organolépticos como a cor e o sabor, sendo utilizada para a tipificação do mel como medida de valorização do produto.
- De acordo com a sua origem floral, encontram-se tipificados vários tipos de méis, dos quais podemos destacar:
 - mel monofloral mel, em cujo espectro polínico existe uma espécie que detém mais de 45% do pólen (exceptuam-se para esta regra os méis monoflorais de rosmaninho e de castanheiro, considerados como tal quando as percentagens de pólen dos respectivos tipos polínicos são superiores a 10 e 70 %, respectivamente);
 - mel multifloral mel obtido a partir do néctar de várias espécies, no qual não se realçam características predominantes de uma determinada planta.

Flora melífera

- A riqueza e a diversidade em flora melífera de Portugal, quer de espécies silvestres (a maioria), quer de plantas cultivadas, como o castanheiro e o eucalipto, fazem com que exista uma grande diversidade de méis monoflorais ao longo do país.
- Os méis monoflorais mais emblemáticos são:
 - mel de Rosmaninho (Lavandula stoechas), nas zonas de cota inferior a 400 m;
 - mel de Urze (*Erica umbellata*), até à cota de 900 m;
 - mel de Castanheiro (*Castanea sativa*), produzido em zonas de montanha (entre os 700 e 1200 m).
- Podem ainda referir-se os méis de Alecrim (*Rosmarinus officinalis*), Medronheiro (*Arbutus unedo*), Soagem (*Echium plantagineum*), Poejo (*Mentha pulegium*), Laranjeira (*Citrus sinensis*), Cardo (*Carlina racemosa*), Eucalipto (*Eucalyptus spp*) e Girassol (*Helianthus annuus*).

Os produtos da colmeia

INTRODUÇÃO

- O mel é o produto apícola economicamente mais importante, consumido desde tempos pré-históricos, como alimento doce, bebida alcoólica, edulcorante ou medicamento.
- Mais tarde, passou a usar-se a cera para iluminação e o propólis para sarar feridas.
- Recentemente, surgiu a utilização do veneno das abelhas para fins farmacológicos e do pólen e geleia real para fins alimentares.

MEL

- A abelha aproveita maioritariamente duas fontes naturais de líquidos açucarados, com as quais elabora dois tipos de mel, respectivamente:
 - Néctar das plantas MEL FLORAL
 - Secreções doces de insectos parasitas das plantas MEL DE MELADA
- Após a extracção destes produtos com o aparelho bocal, a obreira enriquece-os com secreções enzimáticas próprias e transporta-os para a colmeia onde são também enriquecidos com enzimas de outras abelhas.

- Em seguida é desidratado progressivamente e armazenado em células apropriadas. Depois de cheias, são seladas com uma fina película de cera o opérculo que isola o mel do meio exterior.
- Em simultâneo ocorrem reacções bioquímicas que transformam o produto original em mel, cujo objectivo, do ponto de vista da abelha, é permitir o armazenamento prolongado de uma excelente reserva alimentar energética, no menor volume possível.
- No momento da cresta, o apicultor desopercula os quadros, centrifuga-os, decanta o mel daí resultante para separar impurezas e coloca-o em frascos.
- O maneio inadequado como a radiação solar directa ou as elevadas temperaturas, bem como a pasteurização, diminuem as qualidades biológicas naturais do mel.

Tipos de mel

• Segundo a origem botânica:

Mel mono(multi)floral - Quando predomina (ou não) uma fonte de flora melífera (confirmada por amostragem de grãos de pólen no mel), como por exemplo o mel de rosmaninho ou de urze.

• Segundo a zona de produção:

Ex: "Mel de Trás-os-Montes" ou "Mel do Algarve"

• Segundo a contaminação da flora:

Mel "biológico" - Produzido segundo um regulamento específico, em locais suficientemente afastados de cultivos agrícolas ou florestais submetidos a fitofármacos ou fertilizantes, ou zonas contaminadas.

Composição do mel

• Embora seja muito variável, nomeadamente com a flora melífera predominante e com factores edafoclimáticos, o mel tem a seguinte composição média:

17% de água

38% de frutose

31% de glucose

8% de dissacáridos

2% de outros açúcares

4% de outras substâncias

- Com maior pormenor, foram identificados até hoje:
 - Mais de 20 sacáridos
 - Ácidos: glucónico, acético, butírico, láctico e oxálico.
 - Minerais: K, Na, Mg, P, Ca e Zn.
 - Proteínas.
 - Amino-ácidos livres: Prolina, alanina e ácido aspártico.
 - Enzimas: Amilase, sacarase, glucose-oxidase, catalase e fosfatase ácida.
 - Vitaminas: C, B1, B2, B6, PP, H e ácido fólico.
 - Compostos aromáticos (mais de 200).
 - Lípidos: Ácido palmítico e ácido oleico.
 - Flavenoides, flavonas, etc.

Propriedades do mel

- NUTRITIVAS: Rápido fornecimento de energia, uma vez que a glucose (31%) é directamente assimilada.
 Importante fonte mineral pois os teores em Ca e Zn fazem do mel um alimento apropriado crianças, idosos e para quem faz esforços físicos intensos.
- GERMICIDAS: Efeito de osmose, devido à elevada concentração de açúcares, é reduzida a água livre disponível para os microorganismos. O pH é baixo e há poucos nutrientes disponíveis. Álem disso, o peróxido de hidrogénio gerado no meio, impede o desenvolvimento de germes. Outros factores da composição do mel auxiliam na sua acção germicida (ácidos, enzimas, flavonoides, etc.).

- DERMATOLÓGICAS: Benéfico contra queimaduras e úlceras de pele, aplicado de forma tópica. Previne a infecção pelas propriedades bactericidas e bacteriostáticas, mas também, pela sua viscosidade, formando uma barreira física à infecção. Promove a cicatrização por ter enzimas que estimulam a formação de tecidos. Devido à sua osmolaridade, absorve fluidos edemáticos, mantendo limpas as feridas e reduzindo pruridos e irritações.
- GASTROENTEROLÓGICAS: Atenua e encurta o efeito das gasteroenterites bacterianas. Inibe o crescimento do *Helicobacter pylori*, bactéria responsável por úlceras e cancros gástricos.
- VASODILATADORAS, DIURÉTICAS e LAXANTES: devido ao elevado teor em fructose.

- EXPECTORANTE: Devido ao elevado poder de diluição das secreções brônquicas.
- ANTITÚSSICA: Conforme a origem do mel, assim pode ter diferentes substâncias aromáticas responsáveis por estas características.

• PRODUTOS COM MEL NA COMPOSIÇÃO:

- Pastelaria - Cerveja de mel

- Torrões - Vinagre de mel

- Sabão de mel - Mel com frutos

Hidromel (vinho de mel)
 Comidas de bébé, etc.

PROPÓLIS

- É um exsudado resinoso das plantas, nomeadamente árvores e arbustos, que as abelhas recolhem e transformam. Os géneros mais visitados para este fim são: *Fagus, Aesculus, Alnus, Betula, Corylus, Quercus, Populus, Salix, Pinus, Prunus, Castanea*, etc. Dependendo da origem, o propólis pode ser amarelo esverdeado, vermelho vivo, castanho e até negro.
- A abelha arranca das plantas com a sua mandíbula as partículas de propólis, humedece-as e mistura-as com secreções enzimáticas, formando pequenos glomérulos que deposita no pelo da tíbia e transporta na corvícula das patas traseiras de modo idêntico ao pólen corvicular. Ao contrário das abelhas asiáticas, a *Apis mellifera* é uma excelente recolhedora de propólis.

- A abelha utiliza o propólis como uma cola para fixar as partes móveis, para tapar orifícios e fissuras e para envolver os cadáveres evitando a sua decomposição.
- Para a recolha de propólis, o apicultor coloca uma rede em PVC de malha fina, as abelhas iniciam logo o enchimento dos orifícios e no final, a rede é retirada, colocada num local frio até o propólis se tornar quebradiço e extrai-se por flexão da rede. Após esta operação é purificado em laboratórios especializados, onde são retiradas as partículas de cera e os grãos de pólen.

Composição do propólis

• Embora seja muito variável, nomeadamente com a espécie vegetal de origem e com factores edafoclimáticos, o propólis tem a seguinte composição média:

17% de ceras

75% de resinas e bálsamos lipossolúveis

5% de sais minerais

8% de dissacáridos

2% de água e bálsamos hidrossolúveis

1% de óleos essenciais

• Os grupos de substâncias mais importantes no propólis são: aminoácidos, ácidos alifáticos, ácidos aromáticos, ésteres, álcoois, aldeídos, etc

.

Propriedades do propólis

- Baseadas em dois grupos de compostos com actividade biológica, o **ácido cafeico** e os **flavonóides**, bem como na interacção com outras substâncias presentes, resulta uma potente resposta inibitória da reprodução bacteriana, replicação vírica e infecciosidade, de que resultam as seguintes propriedades gerais:
 - Antiséptica (em oftalmologia, odontologia, otorrinolaringologia, dermatologia e urologia).
 - Antibacteriana Antitumoral Antioxidante
 - Antifúngica Cicatrizante Antiinflamatória
 - Antivírica Imunomodeladora
 - Pode causar reacções alérgicas. Nos EUA, o seu uso em alimentos está proibido.

CERA

- É a primeira produção da colónia e sustenta a sua organização física e biológica.
- Produzida em glândulas cerígenas (espelhos de cera) que produzem escamas de cera.
- Glândulas formadas por dois tipos de células oenócitos e adipócitos.
- Produção máxima das obreiras entre o 6° e o 12° dia de vida.
- Biossíntese influenciada por:
 - Fluxo de néctar e alimento, uma vez que é produzida a partir dos açúcares alimentares.
 - Número de abelhas jovens e tamanho da colónia.
 - Distribuição dos espaços livres na colmeia.

- A abelha constrói minuciosamente os quadros com as mandíbulas, a partir das finas e brancas escamas de cera que produz, surgindo os alvéolos de forma hexagonal. Estes alvéolos serão destinados a suster os ovos e larvas e armazenar alimentos para a continuidade da colónia.
- Os apicultores extraem a cera fundindo em água fervente os quadros, restos de quadros, opérculos, etc. e após um arrefecimento lento e por diferença de densidade, extrai-se a cera.
- Os blocos de cera vendem-se em bruto a indústrias especializadas, que moldam novas folhas de cera estampadas com a base dos opérculos, que as abelhas irão depois "puxar". Deste modo poupamos tempo e trabalho às abelhas, permitindo rentabilizar a produtividade do período de floração.

Composição da cera

- Composição muito complexa, pelo número de elementos que a constituem, mas baseia-se numa mistura de ácidos gordos e álcoois de cadeia longa, ésteres desses ácidos gordos e hidrocarbonetos saturados e insaturados:
 - 56% de hidrocarbonetos, ésteres hidroxiésteres, ácidos e álcoois livres.
 - 44% de componentes secundários e elementos voláteis (responsáveis pela plasticidade e baixo ponto de fusão)
- Dos grupos de substâncias da cera fazem parte o ácido palmítico, o ácido ceróico e os flavonoides.

Propriedades da cera

- Até ao séc. XIX, só era conhecida a cera de abelhas de mel e o principal destino era a iluminação.
- A partir da década de sessenta desvalorizou-se com o aparecimento das estearinas (derivadas do petróleo), oito vezes mais baratas.
- A cera pode ainda hoje ser utilizada para fins religiosos, embalsamamentos, impermeabilizações, moldes, pinturas e para encerar móveis.

GELEIA REAL

- Alimentação exclusiva de todas as larvas até ao terceiro dia de vida, até ao quinto para as destinadas a serem rainhas e até ao final da vida para a rainha.
- Produzida nas glândulas hipofaríngeas e mandibulares das obreiras jovens (5-14 dias de vida).
- Alimento rico em proteína, cuja biossíntese se realiza principalmente a partir do pólen recolhido.
- Produção especializada, com utensílios especiais, com cuidados e visitas frequentes e um clima propício pelo que é produzida em pequenas quantidades e atinge preços elevados.
- Após a recolha deve conservar-se a baixas temperaturas.

Composição da geleia real

 Composição variável segundo a estação do ano e o clima da região:

```
pH: 3,6-4,8
```

64 – 68% de água

36 – 42% de prótidos

9 - 12% de lípidos

8 - 43% de glúcidos

0.7 - 1% de sais minerais

- Identificaram-se 20 ácidos orgânicos (ex: láurico, adípico, palmítico, sebácico).
- Como hidratos de carbono, a geleia real contém, entre outros, ribose, fructose, glucose, sacarose, manose e maltose.
- Em termos de composição mineral, encontramos Fe, Ca, K, Na, Mg e Zn.
- Quanto a vitaminas podem-se referir as seguintes: B1, B2, B3, B6, B12, PP, C, H e E.
- Encontram-se também os seguintes amino-ácidos livres: ácido glutâmico, lisina, prolina e ácido aspártico.

Propriedades da geleia real

- A geleia real, utilizada pela indústria dietética e cosmética, apresenta as seguintes propriedades:
 - AntiinflamatóriaRegeneradora
 - Hipercolesterolémica Vasodilatadora
 - AntibióticaCarcinostática
- Para preservar as suas propriedades, a geleia real fresca deve conservar-se a baixas temperaturas (0 – 5°C) ou em soluções neutras adequadas, ou ainda, na forma liofilizada, em soluções hidro-alcoólicas, misturada com mel, iogurte ou ginseng (planta medicinal de origem chinesa).

PÓLEN (Pão das abelhas)

- Recolhido nas flores e transportado para a colmeia, o pólen serve para alimentar as larvas e abelhas jovens. A recolha faz-se sob a forma de pequenos glomérolos arredondados, que a abelha molda recorrendo a substâncias aglutinantes como o mel, pólen ou secreções salivares, acabando estas também por alterar a composição final deste produto.
- As cargas são transportadas nas corbícolas ou corbelhas, pelo que também pode chamar-se pólen corbicular e é armazenado dentro da colmeia junto à criação.
- O apicultor que pretende recolher pólen, coloca na entrada da colmeia uma rede que obriga as abelhas a soltarem as cargas para um recipiente colocado por baixo da entrada da colmeia.

- O pólen recém recolhido tem uma percentagem elevada de humidade que deve ser reduzida rapidamente para valores de 5 a 6% (em secadores adequados, pois o sol ou as temperaturas elevadas adulteram as características do pólen).
- Como o pólen é uma das mais importantes fontes de alguns nutrientes para as abelhas e uma vez que há grande variação na sua composição dependendo da origem botânica, devemos colocar o apiário em zonas de grande diversidade polínica, para evitar carências nutricionais nas abelhas.

Composição do pólen

11% de humidade 5% de ácidos gordos

25% de glúcidos 5% de sais minerais

20% de proteínas 25% de outros componentes

- Dos ácidos gordos destacam-se o palmítico, linoléico, linolénico, oléico e láurico.
- Entre os minerais, os mais importantes são: Na, K, Mg, P, S, Fe e Zn.
- Contém as vitaminas B1, B2, B3, B5, B6, B9, C, E e H.
- Tem enzimas provenientes das secreções salivares.
- Carotenóides responsáveis pela cor e flavonois.
- Contém ainda amino-ácidos livres, amido, celulose, pectina, lenhina e esporopolenina.

Propriedades do pólen

- Anti-anémico, aumentando a taxa de hemoglobina.
- Regulador da função intestinal.
- Anti-oxidante e/ou anti-radicais livres. Nos desportistas, o esforço físico aeróbio consome oxigénio suplementar, pelo que há frequentemente um desequilíbrio entre a formação e a degradação de radicais livres, recorrendo ao consumo de pólen como suplemento alimentar.
- Imunomodelador.
- Anti-esclerótico, devido aos ácidos gordos livres.
- Diminuição da agregação das plaquetas.
- Tratamento da hiperplasia benigna da próstata.

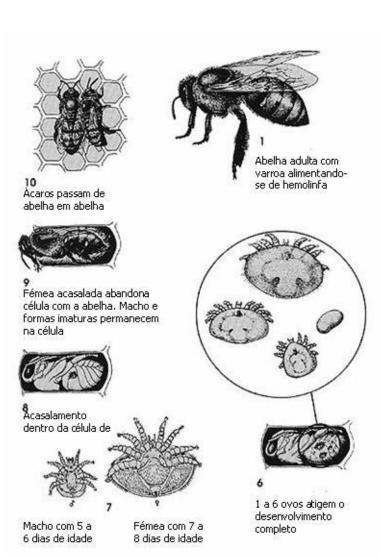
VENENO (Apitoxina)

- Cada aparelho do ferrão tem 0,10 a 0,15 mg de veneno, suficiente para matar uma grande variedade de inimigos.
- Para extrair o veneno das abelhas, o apicultor coloca no interior da colmeia uma placa de vidro atravessada por fios condutores capazes de emitir descargas eléctricas (33 V). Ao atravessar a placa, as abelhas reagem esvaziando o reservatório de veneno.
- Esta operação tem de ser limitada no tempo para não irritar a colónia que emite grande quantidade de feromonas.
- Rendimento: 1 g de veneno seco por 2 horas (20 colmeias).
- Apitoxina: líquido claro ou pó branco-leitoso (se desidratado), que se obtém raspando os cristais do vidro. O operador deve proteger-se pois o pó é extremamente irritante para as mucosas.

Composição do veneno

- 60% de proteína
- 20% de péptidos
- 5% de fosfolípidos
- 5% de compostos voláteis (feromonas)
- 2% de açucares
- 1% de amino-ácidos
- 7% de outras substâncias
- Dentro das proteínas, destacam-se a melitina, apamina, fosfolipase A, hialuronidase e secapina.
- Dos péptidos, os mais importantes são a apamina, a procamina, a histamina, a dopamina e a noradrenalina.

Propriedades do veneno


- A resposta imunitária do organismo humano às proteínas contidas na apitoxina caracteriza-se pela formação de anticorpos, provocando dor, inflamação e calor.
- Esta reacção defensiva pode ser exacerbada em indivíduos hipersensíveis podendo até ocorrer a morte por choque anafiláctico com apenas uma picada.
- Em casos menos graves de anafilaxia, ocorrem náuseas, ardor cutâneo, dificuldade visual e respiratória, além de edema mais ou menos generalizado.
- Pode no entanto utilizar-se o veneno das abelhas como acção terapêutica, para reumatismo, artroses e neuralgias, quer para a dessensibilização à toxina.
- Conhecem-se ainda propriedades bacteriostáticas, bactericidas, hemolíticas e anticoagulantes.

Sanidade

A varroose é uma doença parasitária devida ao ácaro Varroa jackobsoni.

O ciclo de vida e de reprodução deste parasita, decorre em paralelo ao da abelha, o que explica a contaminação generalizada e o desaparecimento completo de elevado número de colónias.

Normalmente são as obreiras e os zangãos que asseguram a propagação da Varroa que, alimentando-se do sangue das abelhas (hemolinfa) e multiplicando-se muito rapidamente dentro dos alvéolos operculados, enfraquece as colónias, deixando-as à mercê de outras doenças (loques, viroses e micoses).

Ilustrações de B. Alexander Tradução de João Casaca

Acaro adulto entra em célula de larva com 5 a 5 1/2 dias de idade

Acaros alimentamse do alimento da criação

Ácaros alimentam-se da pré-pupa

5

Acaro fémea põe primeiros ovos 60 horas após operculação da célula. Postura de 30 em 30 horas

Identificação e sintomatologia

As abelhas apresentam-se muitas vezes com as asas deformadas.

Podem ser visíveis as varroas sobre as abelhas adultas.

A criação afectada pela doença morre com frequência, pelo que os quadros de criação apresentam-se com o tradicional aspecto em mosaico, ou com a criação

Ácaro Varroa parasitando uma abelha adulta

Diversos ácaros Varroa sobre uma ninfa de abelha num alvéolo operculado

Ácaro Varroa, notando-se os 4 pares de patas

Piolho de abelha, Braula coeca, muitas vezes confundido com o ácaro Varroa. O piolho só tem 3 pares de patas.

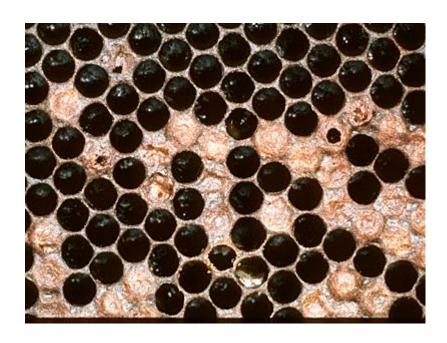
Profilaxia e controlo

Podem e devem ser utilizados produtos de uso veterinário, desde que homologados para essa utilização em Portugal.

O Apistan®, o Apivar®, o Bayvarol® e o Apiguard®.

De todos, apenas este último pode ser utilizado em Agricultura Biológica.

- é causada por uma bactéria, Paenibacillus larvae,
- afecta apenas as fases imaturas da abelha,
- é muitíssimo contagiosa.

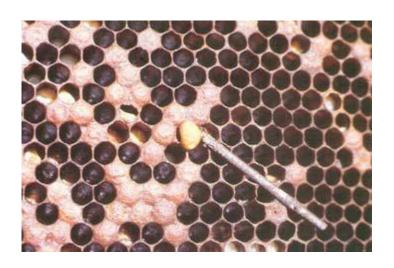


À medida que a bactéria se vai desenvolvendo, a larva passará de uma cor branco pérola para castanha, acabando por se tornar numa "papa". Esta "papa" contém os restos da larva e cerca de 5 a 10 milhões de esporos.

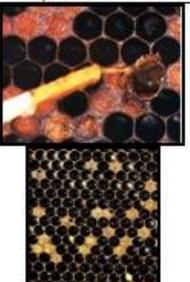
- Após a morte das larvas, as abelhas procedem à limpeza da célula, numa tentativa de remover o seu conteúdo. Estas abelhas contaminarão desta forma a sua armadura bucal com milhares de esporos.
- A partilha de alimentos entre as abelhas fará o resto, não demorando muito até a maioria das abelhas estar contaminada, incluindo as que estão a alimentar a criação.

Devemos procurar sinais de larvas mortas e desfeitas. Estes restos de larvas são normalmente de cor castanha ou negra, e estão muito agarrados á parede da célula.

Loque Europeia

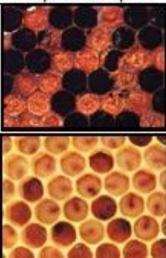

- é uma doença da criação
- provocada por uma bactéria, a Mellisococcus pluton.
- é considerada menos perigosa que a Loque Americana.

Loque Europeia


 a criação apresenta o aspecto salpicado, com células vazias consequência da morte das larvas (operculadas ou não),

 células contendo larvas mortas antes de serem operculadas e que se encontram "caídas" no fundo da célula, numa posição anormal e de cor acastanhada ou castanhas escuras.

Loque Europeia


Larva morta por Loque Europeia – não forma filamento ao ser retirada com um palito

A princípio — As larvas doentes ficam ligeiramente amareladas. À medida que a decomposição avança tornam-se côr de café e alongando-se no comprimento da célula. Quando se mexe com um palito a massa viscosa pode formar um fio de até 30mm. Existe um cheiro a putrefacção.

Estados avançados— O aspecto da criação parece um pimenteiro. Quando secam as larvas afectadas ficam castanho escuro e formam uma escama junto à parede inferior da célula. Uma boa iluminação é fundamental para observar estas alterações. Os selos de cera quando presentes estão perfurados ou afundados com uma aparência ensopada.

Loque Europeia

A principio— As larvas afectadas ficam amareladas e as traqueias ficam visíveis nas células abertas. Jovens larvas não seladas (3 a 5 dias) em forma de "C" à volta das paredes da célula.

Estados avançados— O aspecto da criação parece um pimenteiro. As larvas mortas são encontradas por detrás da cera concava e perfurada das células. A massa viscosa dentro da célula é menos pegajosa que na loque americana.

Por vezes pode também apresentar um cheiro a putrefacção.

Ascosferiose

É uma doença da criação causada pelo fungo *Ascosphaera apis.*

Caracteriza-se pela morte das larvas dentro dos alvéolos onde fazem o seu desenvolvimento, e pelo aspecto particular e facilmente identificável: as larvas ficam com um aspecto engessado, ou mumificadas.

Ascosferiose

Ascosferiose

Os <u>sintomas</u> mais comummente observados são uma grande quantidade de larvas morta engessadas na entrada da colmeia, (onde aliás se concentra tudo o que se expelido do seu interior, e que as obreiras responsáveis pela limpeza da colónia consideram indesejável).

Nosemose

É uma doença das abelhas, provocada por um protozoário unicelular chamado Nosema apis.

Os principais **sintomas** são:

- ✓ o aparecimento de manchas de cor escura no exterior da colónia, causadas pelas defecções líquidas das obreiras (sinal de desinteria),
- ✓ um número anormal de baixas, presentes na entrada da colmeia.

Nosemose

As obreiras doentes apresentam abdómen distendido e paralisia. A maneira mais segura de diagnosticar a doença é através de exame

laboratorial.

Resumo

Doenças existentes em Portugal	População atingida	Agente	Sintomas	Profilaxia	Tratamento
Loque Americana (bactéria)	Criação	Paenibacillus larvae	parede do alvéolo. Cheiro a "cola de	Não introduzir cera contaminada. Substituição periódica da cera. Não alimentar as abelhas com	1. Antibióticos - Risco de resíduos no mel; 2. Redução do enxame; 3. Queimar ceras e material contaminado.
Loque Europeia (bactéria)	Criacan	Melissococos pluton	Criação em mosaico. Cheiro acre quando se abre a colmeia. Larva não é filamentosa nem viscosa e não adere à parede do alvéolo	Desinfecção de material anícola	Antibióticos - Risco de resíduos no mel
Ascosferiose (fungo)	Criação	Ascosphaera apis	1 3		Desinfecção do material apícola.
Varroose (ácaro)	Criação e Abelhas adultas	Varroa jacobsonie Varroa destructor	ldeformadas. Larvas mortas podres e mal	Outono	Acaricidas (amitraz, fluvalinato); ácidos orgânicos
	Abelhas adultas	Acarapis woodi	lahelhas T)ificuldade em iniciar voo	Realizar exame laboratorial antes do Inverno	Acaricidas; ácidos orgânicos
Nosemose (protozoário)	Abelhas adultas	Nosema apis			Desinfecção do material apícola.